
Functional Testing
Software Engineering

Andreas Zeller • Saarland University

Testing

Testing

Even more Testing

Testing

Software is
manifold

Software is
manifold

Software is
manifold

Software is
manifold

Software is
manifold

Software is
manifold

Testing

Configurations

What to test?

Configurations

Dijkstra’s Curse

Configurations

Testing can only find the
presence of errors, 
 not their absence

Formal Verification

Configurations

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Zeller’s Variation on
Dijkstra

Configurations

Ab
st

ra
ct

io
n Verification can only find

the absence of errors, 
 but never their presence

The Best of two
Worlds

Ab
st

ra
ct

io
n

Configurations

What to test?

Configurations

Functional Testing
Software Engineering

Andreas Zeller • Saarland University

Testing Tactics

• Tests based on spec

• Test covers as much 
specified behavior  
as possible

• Tests based on code

• Test covers as much
implemented behavior 
as possible

Functional  
“black box”

Structural  
“white box”

Why Functional?

• Program code not necessary

• Early functional test design has benefits 
reveals spec problems • assesses testability • gives additional
explanation of spec • may even serve as spec, as in XP

Functional  
“black box”

Structural  
“white box”

Why Functional?

• Best for missing logic defects 
Common problem: Some program logic was simply forgotten 
Structural testing would not focus on code that is not there

• Applies at all granularity levels 
unit tests • integration tests • system tests • regression tests

Functional  
“black box”

Structural  
“white box”

Random Testing

• Pick possible inputs uniformly

• Avoids designer bias 
A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)

• But treats all inputs as equally valuable

⦨⇢ Angle

Force

Infinite Monkey Theorem

Youtube

⦨⇢ Angle

Force

232 = 4.294.967.296
different values

232 = 4.294.967.296
different values

232 = 4.294.967.296
different values

232 = 4.294.967.296
different values⨉ =

264 = 18.446.744.073.709.551.616  
different runs

18.446.744.073.709.551.616
Minutes

gadgets-club.com

http://gadgets-club.com

9.223.372.036.854.775.808 Minutes

4.611.686.018.427.387.904 Minutes

1 Minute

18.446.744.073.709.551.616
⨉

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing

Functional  
specification

Independently 
testable feature

identify

Testable Features

Representative 
values Model

Test case 
specifications

identify derive

derive

Test case

generate

• Decompose system into 
independently testable features (ITF)

• An ITF need not correspond to units or
subsystems of the software

• For system testing, ITFs are exposed
through user interfaces or APIs

Testable Fatures

class Roots {  
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 { … }

 // Result: values for x  
 double root_one, root_two;  
}

• What are the independently testable features?

Testable Fatures

• Consider a multi-function
calculator

• What are the independently
testable features?

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Testable Features

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Representative Values

• Try to select inputs 
that are especially 
valuable

• Usually by 
choosing 
representatives of equivalence classes that
are apt to fail often or not at all

Needles in a Haystack

• To find needles,  
look systematically

• We need to find out  
what makes needles special

Failure (valuable test case)

No failure

Systematic Partition Testing
Failures are sparse in
the space of possible

inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will

include the dense parts

Functional testing is one way of
drawing orange lines to isolate

regions with likely failures

T
he

 s
pa

ce
 o

f p
os

si
bl

e
in

pu
t

va
lu

es
(t

he
 h

ay
st

ac
k)

Equivalence Partitioning

Input condition Equivalence classes

range one valid, two invalid 
(larger and smaller)

specific value one valid, two invalid 
(larger and smaller)

member of a set one valid, one invalid

boolean one valid, one invalid

Boundary Analysis
Possible test case

• Test at lower range (valid and invalid),
at higher range(valid and invalid), and at center

Example: ZIP Code

• Input:  
5-digit ZIP code

• Output:  
list of cities

• What are
representative
values to test?

Valid ZIP Codes

1. with 0 cities 
as output 
(0 is boundary value)

2. with 1 city  
as output

3. with many cities 
as output

Invalid ZIP Codes
4. empty input

5. 1–4 characters 
(4 is boundary value)

6. 6 characters 
(6 is boundary value)

7. very long input

8. no digits

9. non-character data

“Special” ZIP Codes

• How about a ZIP code that reads 
 
12345‘; DROP TABLE orders; SELECT
* FROM zipcodes WHERE ‘zip’ = ‘

• Or a ZIP code with 65536 characters…

• This is security testing

Gutjahr’s Hypothesis

Partition testing 
is more effective  

than random testing.

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Representative Values

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing

• Have a formal model  
that specifies software behavior

• Models typically come as

• finite state machines and

• decision structures

0

1 2
3

4 5 6

7 8

9

Finite  
State 
Machine

Coverage Criteria

• Path coverage: Tests cover every path 
Not feasible in practice due to infinite number of paths

• State coverage: Every node is executed 
A minimum testing criterion

• Transition coverage: Every edge is executed 
Typically, a good coverage criterion to aim for

0

1 2
3

4 5 6

7 8

9

Transition
Coverage

State-based Testing

• Protocols (e.g., network communication)

• GUIs (sequences of interactions)

• Objects (methods and states)

Account states

empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 State diagram for Account class (adapted from [KIR94])

Decision Tables
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

Condition Coverage

• Basic criterion: Test every column 
“Don’t care” entries (–) can take arbitrary values

• Compound criterion: Test every combination 
Requires 2n tests for n conditions and is unrealistic

• Modified condition decision criterion (MCDC):
like basic criterion, but additionally, modify
each T/F value at least once such that the
outcome changes  
Again, a good coverage criterion to aim for

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

F

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

T

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

F

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

F

Weyuker’s Hypothesis

The adequacy of a coverage criterion 
can only be intuitively defined.

Learning from the past

Pareto’s Law

Approximately 80% of defects 
come from 20% of modules

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs

• Input values enumerated in previous step

• Now: need to take care of combinations

• Typically, one  
uses models and  
representative 
values to generate 
test cases

Combinatorial Testing

IIS

Apache

MySQL Oracle

Linux

Windows OSServer

Database

Combinatorial Testing

• Eliminate invalid combinations 
IIS only runs on Windows, for example

• Cover all pairs of combinations 
such as MySQL on Windows and Linux

• Combinations typically generated
automatically 
and – hopefully – tested automatically, too

Pairwise Testing
IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

Testing environment

• Millions of configurations

• Testing on dozens of different machines

• All needed to find & reproduce problems

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases

• Implement test cases in code

• Requires building scaffolding –  
i.e., drivers and stubs

Unit Tests

• Directly access units (= classes, modules,
components…) at their programming
interfaces

• Encapsulate a set of tests as a single
syntactical unit

• Available for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

Running a Test

A test case…

1. sets up an environment for the test

2. tests the unit

3. tears down the environment again.

Testing a URL Class

http://www.askigor.org/status.php?id=sample

Protocol Host Path Query

http://www.askigor.org/status.php?id=sample

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class URLTest extends TestCase {
 private URL askigor_url;

 // Create new test
 public URLTest(String name) { super(name); }

 // Assign a name to this test case
 public String toString() { return getName(); }

 // Setup environment
 protected void setUp() {
 askigor_url = new URL("http://www.askigor.org/" +
 "status.php?id=sample"); }
 // Release environment
 protected void tearDown() { askigor_url = null;}

 // Test for protocol (http, ftp, etc.)
 public void testProtocol() {

assertEquals(askigor_url.getProtocol(), "http");
 }

 // Test for host
 public void testHost() {

int noPort = -1;
 assertEquals(askigor_url.getHost(), "www.askigor.org");

assertEquals(askigor_url.getPort(), noPort);
 }

 // Test for path
 public void testPath() {

assertEquals(askigor_url.getPath(), "/status.php");
 }

 // Test for query part
 public void testQuery() {

assertEquals(askigor_url.getQuery(), "id=sample");
 }

This functional test
can be used
as a specification!

 // Set up a suite of tests
 public static Test suite() {
 TestSuite suite = new TestSuite(URLTest.class);
 return suite;
 }

 // Main method: Invokes GUI
 public static void main(String args[]) {
 String[] testCaseName =
 { URLTest.class.getName() };
 // junit.textui.TestRunner.main(testCaseName);
 junit.swingui.TestRunner.main(testCaseName);
 // junit.awtui.TestRunner.main(testCaseName);
 }
}

JUnit

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing

Summary

